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Abstract. An analysis of a general non-perturbative technique for calculating ground-state
properties of extensive lattice many-body systems is presented, in order to extract accurate
numerical values characterizing the ground-state spectrum. This technique, the plaquette
expansion, employs an expansion about the thermodynamic limit of the coefficients that are
generated by the Lanczos process. For the ground-state energy this error analysis, using theorems
on the error bounds for the Lanczos method and the truncation in the plaquette expansion, allows
for an accurate estimate when the approximation is taken to a given order. As an example we
analyse the one-dimensional antiferromagnetic Heisenberg model, and find that the best ground-
state energy density is within 3×10−6 of the exact value, although the systematic error is 10−5.
We also find, for this model, systematic improvement with each new order included in the
expansion and have not observed any asymptotic tendencies. At equivalent orders of truncation
we achieve far better results than for the other moment methods, such as thet-expansion or the
connected-moment expansion.

1. Introduction

Recently a number of non-perturbative techniques have been devised for calculating spectral
properties of strongly interacting systems, and all share a common background in being
based on moment formalisms. The first of these was thet-expansion [1], which in turn
led to the connected-moment expansion (CMX) [2], and most recently an analytic Lanczos
expansion, the plaquette expansion [3]. These methods are all based essentially on linked-
cluster expansions, that is to say connected moments with respect to some trial ground
state, and all ground-state averages automatically have size extensivity. However, while
these methods have the same starting point they differ in their treatment, and consequently
have different properties with regard to accuracy and convergence. Most implementations
of these techniques have been numerical ones where the aim was to accurately represent
ground-state properties over a wide range of coupling strengths, far beyond any perturbative
regime. There have been a number of numerical investigations of thet-expansion and the
CMX in all its variants with simple models drawn from a range of problems, e.g. correlation
energies in molecules [2] and quantum spin systems [4] to name but a few. Our intention
here is to present a theoretical analysis of the errors in the plaquette expansion, and apply
this analysis to a specific example of an exactly solvable model thereby demonstrating that
this method is capable of yielding accurate ground-state energies. We can also test directly
a number of aspects of our analysis against the known exact results of the model.
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The resolvent function,

R(z) = 〈ψ0| 1

z −H |ψ0〉 (1)

plays an important role in describing the spectrum of many-body systems with a Hamiltonian
H at zero temperature. Specifically, knowledge of the behaviour and analyticity of the
resolvent as a function of complexz yields the ground state and excited states within a
given sector, and the density of states from which any physical average may be computed. It
has a real Jacobi-fraction continued-fraction form constructed from the Lanczos coefficients
αn, βn:

R(z) = − ∞K
n=0
−
(

β2
n

z − αn

)
(2)

and its termination after thenth element, termed itsnth continuant, defines thenth numerator
andnth denominator,Pn(z) andQn(z), respectively:

Rn(z) ≡ 1

z − α0−
β2

1

z − α1−
β2

2

z − α2− . . . −
β2
n

z − αn ≡ −
Pn(z)

Qn(z)
. (3)

Hereβ2
0 is taken to be unity. The polynomialsPn(z) andQn(z) are orthogonal polynomials

defined by the three-term recurrence relation

Qn(z) = (z − αn)Qn−1(z)− β2
nQn−2(z) (4)

with the polynomials having the initial terms

Q−2(z) = 0 Q−1(z) = 1

P−2(z) = 1 P−1(z) = 0.
(5)

In the more traditional manner the Lanczos coefficients arise from the following recurrence
which generates the Lanczos basis{|ψ0〉, |ψ1〉 . . .} in which the Hamiltonian becomes tri-
diagonal:

H |ψn〉 = βn|ψn−1〉 + αn|ψn〉 + βn+1|ψn+1〉.
The Lanczos coefficients, whose individual terms are ordered with respect to the size of

the system, or the number of plaquettesN , were shown [3, 5] to have a simple relationship
to the scaled connected moments for arbitrary order:

αn = c1N + n
[
c3

c2

]
+ 1

2
n(n− 1)

[
3c3

3 − 4c2c3c4+ c2
2c5

2c4
2

]
1

N
+ · · · (6)

for n > 0, and

β2
n = nc2N + 1

2
n(n− 1)

[
c2c4− c2

3

c2
2

]
+ 1

6
n(n− 1)(n− 2)

[−12c4
3 + 21c2c

2
3c4− 4c2

2c
2
4 − 6c2

2c3c5+ c3
2c6

2c5
2

]
1

N

+ · · · (7)

for n > 1, where thecn are defined through the connected Hamiltonian moments as
〈Hn〉c ≡ cnN . Here the definitions and notation of reference [5] have been adopted, rather
than those in references [3, 6].

The plaquette expansion is a general-purpose non-perturbative method of calculating
the spectrum and other ground-state properties of lattice models in the bulk limit. The
analytical behaviour and the physical predictions of the first two orders in the plaquette
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expansion, referred to as the zeroth level and the first-order level, have been described in
previous papers [5, 7]. In all of the analysis presented here we concentrate on the ground-
state spectrum, but a formalism has been developed for other ground-state averages by
considering modified moments and their modified resolvent operator in reference [8].

For accurate evaluations one needs to take the expansion to higher orders, in fact to
arbitrarily large orders, only limited by the practical considerations at hand, such as the
maximum number of moments that can be computed. However, there are some delicate
questions to consider in applying the plaquette expansion. Assuming that we knew the exact
αn and β2

n for all iterationsn (which would be tantamount to detailed knowledge of an
exactly solvable system), and therefore the derived numerator and denominator polynomials
Pn andQn, we have two limiting processes to consider:

(i) firstly the limit as the number of Lanczos iterationsn→ ∞ for a fixed-size, finite
system withN sites; and

(ii) the thermodynamic limitN →∞;

that is,

R∞(z) = − lim
N→∞

{
lim
n→∞

Pn(z;N, {ck: k = 1, 2n+1})
Qn(z;N, {ck: k = 1, 2n+1})

}
. (8)

So in practice one would numerically diagonalize the tri-diagonal Lanczos matrix, for a
series of finite-sized systems tending to large sizes, where in each case the Lanczos procedure
would be applied to construct a sufficiently large matrix for the Lanczos truncation error to
become small. But it is immediately apparent that this procedure cannot be applied to the
plaquette expansion in general because the error in the truncated coefficients can sometimes
grow with Lanczos iteration number, and at a faster rate than the coefficient themselves.

There will be an optimal valuenopt at which the Lanczos iteration should be terminated,
which will depend onN and the specific model:

n < nopt (r, N; {ck})
and the plaquette expansion approximation to the resolvent is

RPE(z) = − lim
N→∞

{
Pnopt (z;N, {α(r)k , β(r)k : k = 1, 2nopt+1})
Qnopt (z;N, {α(r)k , β(r)k : k = 1, 2nopt+1})

}
. (9)

In earlier applications of this method [3, 6, 9, 10], these choices of cut-off and
termination were made on a plausible althoughad hocbasis, where the point of inflection
of the ground-state energy versus Lanczos iteration number was taken as the cut-off point
(assuming there to be a point of inflection, which is not always the case).

The purpose of this paper is to elaborate a theory for the errors arising in the expansion,
and therefore to describe an algorithm by which these errors can be controlled, and thus
extract the best estimate from numerical data. By way of example we test this analysis on
the one-dimensional antiferromagnetic Heisenberg model.

2. Error analysis in the plaquette expansion

We begin by making some definitions and stating some conventions. Firstly we use the
Hamiltonian density, that is the Hamiltonian matrix divided by the number of plaquettes,
so the Lanczos coefficients are adjusted accordingly. The exact Lanczos coefficients are
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denoted by

α(r=∞)n (N)

(β(r=∞)n )2(N)
(10)

even though they are not known for generaln beyond some very low values. The
approximated Lanczos coefficients for the Hamiltonian density, accurate to orderr =
0, 1, 2, . . ., can be represented as

α(r)n =
r∑

p=0

ap(n)

Np
+O((n/N)r+1)

(β(r)n )
2 =

r+1∑
p=1

bp(n)

Np
+O((n/N)r+2)

(11)

whereap andbp are polynomials of degreep in n. For a given order in the expansion, one
has essentially a double asymptotic expansion inn→∞ andN →∞.

The Lanczos termination error, for a system of exact Lanczos coefficients, is defined as

δεLTn ≡ ε(r=∞)n − ε(r=∞)∞ (12)

whereε(r=∞)∞ is the exact ground-state energy density andε(r=∞)n is the lowest eigenvalue of
thenth terminated exact Lanczos matrix. No exact expressions are known for this, except for
some simple classical orthogonal polynomials—e.g. the Chebyshev polynomial—although
there are results for asymptotic approximationsn � 1 for a larger class of orthogonal
polynomial systems. It appears that a universal expression is unlikely to exist. However,
there exist bounds on this error [11] of which the simplest form is

06 δεLTn 6 (εsup − ε0)

(
tanθ(ψtrial, ψ0)

Tn−1(γ )

)2

(13)

although there are optimized variants of this [12, 13]. Hereεsup is the exact supremum to
the energy density spectrum,ε0 is the exact ground-state energy density,θ(ψtrial, ψ0) is the
angle between the trial stateψtrial and the exact ground-state wavefunctionψ0 computed
with the appropriate inner product, andγ is defined by

γ = 1+ 2
ε1− ε0

εsup − ε1
(14)

with the first exact excited-state energyε1. Finally then-dependence is controlled through
the complex Chebyshev polynomial

Tk(z) ≡ cosh(k cosh−1(z)). (15)

Physically this result means that the rate of convergence of the Lanczos method is determined
by the spectrum of the system, controlled in particular by the gap between the first excited
state (within the sector defined by the ground state) and the ground state relative to the
spectral width. The larger this relative gap, the more rapid the convergence.

We will take this functional form to give the exact Lanczos termination error, and not
just the bound to it. There is numerical evidence given in reference [12] that this form quite
accurately describes the actual error forn � 1, at least in its optimized forms. We also
have verified that the optimized forms can represent this termination error in the case of
exact finite AFH chains for over 12 orders of magnitude. All of the spectral quantities that
are unknown will be parametrized and determined from the numerical values of the lowest
eigenvalue for a sequence of Lanczos iterations. That is, for large Lanczos iterations,

δεLTn = eLT λ−n (16)
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where eLT and λ are parameters to be determined. From such a simple form there is a
simple interpretation of the Lanczos rate of convergence coefficientλ—for large system
sizesN we find that the scaled energy gap is given by

N2(ε1(N)− ε0(N)) = (εsup − ε0)
1

16
(λ− 1)2N2 (17)

where ε0(N), ε1(N) are the ground-state and first-excited-state energy densities in the
particular sector the trial state happens to lie in. We have found that this gap can be
successfully extracted from the convergence behaviour of the Lanczos eigenvalue for the
exact finite AFH chain using the above simple dependence equation (16). However, it is
not possible to identify the gap found using the plaquette expansion data with the exact
gap because of plaquette expansion corrections, although there may exist a simple and
approximate relationship between them.

Figure 1. The exact Lanczos termination error|δεLTn | with Lanczos iteration numbern 6 14
for the 1D AFH model withN = 64 sites.

How accurate this simple form may be can be gauged by examining the exact results
for the 1D AFH model. Given that we have moments up to order 28 [14] (see the following
section), one can exactly perform the first 14 Lanczos iterations on systems of arbitrary size.
In figure 1 we display log|δεLTn | versus the Lanczos stepn for a system of sizeN = 64. We
have taken the exact ground-state energy density forN = 64 from the finite-size correction
formula of reference [15]. On top of the exact differences we have placed a best-fit straight
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line to indicate the extent of the deviations from this simple form. It is clearly not accurate
enough in a quantitative sense to follow the local detail, but the deviations are small and
regular.

To model the effect of the truncation due to the plaquette expansion taken up to order
r we define

δεPEn ≡ ε(r)n − ε(r=∞)n (18)

whereε(r)n is the lowest eigenvalue of the Lanczos matrix truncated to orderr and terminated
at thenth Lanczos iteration. To arrive at a general form for this error we appeal to three
arguments. Firstly, one can utilize theorems for lower bounds on the lowest zeros of
members of an orthogonal polynomial system [16] which statesεn > B where

B = min{x−k : 16 k < n} (19)

with the simplest bound sequence is given by

x−k =
1

2

[
(αk + αk+1)−

√
(αk − αk+1)2+ 16β2

k

]
. (20)

Given that the errors in the Lanczos coefficients are going to be of the order of(n/N)r+1,
then the error in the bound will be the same, and thus we take this to be the order of
the error in the plaquette expansion for the ground-state energy density, at this Lanczos
iteration. That is we write

δεPEn = f1

( n
N

)r+1
+ f2

( n
N

)r+3/2
+ f3

( n
N

)r+2
+ · · · (21)

wheref1, f2 andf3 are parameters to be determined.
Our second argument arises from the possibility of analytically diagonalizing the

Lanczos tri-diagonal Hamiltonian for the first three iterations, with the exact Lanczos
coefficients and with the plaquette expansions of them. It is found that the plaquette
expansion is exact for the first two iterations:δεPE1,2 = 0. The first non-zero difference
is found to be

δεPE3 = 2

27

(
3

N

)r+1

+O(N−r−3/2) (22)

which agrees with out first argument.
We also compute the exact plaquette expansion error for Lanczos iterations up to 14 for

a system of sizeN = 64, and these are shown in figure 2, in the form of log|δεPEn | versus
the Lanczos stepn for expansion ordersr = 5, 7, 9 and 11. Clearly the leading-order term
is correct, as indicated by the initial point and slope, and the total corrections are reasonably
well bounded.

Combining these two forms, and neglecting the small adjustments in the error law for
finite Lanczos termination due to the replacement of the exact Lanczos coefficients with
the truncated ones (this adjustment can formally be taken into account in the plaquette
expansion error law) one has the total error

δεtotaln ≡ ε(r)n − ε(r=∞)∞ = δεLTn + δεPEn (23)

or in terms of the introduced parameters

εn = ε0+ eLT λ−n + f1

( n
N

)r+1
+ f2

( n
N

)r+3/2
+ f3

( n
N

)r+2
. (24)

It is the quantityε0 that is sought, being the estimate for the ground-state energy. We must
emphasize that the above form is not expected to exactly represent the actual variation of
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Figure 2. The exact plaquette expansion error|δεPEn | with Lanczos iteration numbern 6 14
for the 1D AFH model withN = 64 sites. The curves are labelled according to the orderr at
which the expansion is truncated.

the eigenvalue with the Lanczos iteration number, but that it is the form that most closely
represents it for a given small number of free parameters. The actual, or highly accurate
but unknown form would be much more complicated and require a greater number of free
parameters. In all of the above, the size of the systemN had to be finite, although large,
for the expansion to work, and we have to extrapolate to the thermodynamic limit via a
sequence of systems of increasing size.

3. The method applied to the 1D AFH model

We test these ideas on the one-dimensional isotropic antiferromagnetic Heisenberg model,
where the trial state taken in this case was the classical Néel state. The Lanczos coefficients
for this model have been calculated, in the plaquette expansion, using connected Hamiltonian
moments up to〈H 28〉c, which were supplied by Zheng Weihong and colleagues [14]. We
have used the product–difference algorithm, obtained within the memory function formalism
as given in reference [21, 22], to compute the Lanczos coefficients up to orderr = 11 from
the moments. The cumulants and the Lanczos coefficients are available, upon request, from
one of the authors (NSW). With the Hamiltonian matrix constructed in tri-diagonal form the
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Figure 3. The variation of the lowest eigenvalue in the plaquette expansionε
(r)
n with the Lanczos

iteration numbern for the two different types of behaviour: the critical case for orderr = 11;
and the non-critical case forr = 7 whenN = 105.

lowest eigenvalue for the model was computed for various chain lengthsN and at various
orders in the plaquette expansionr, all at regular Lanczos iteration numbers. Qualitatively
the data were found to exhibit two types of behaviour as the Lanczos iteration number
becomes large (of orderN ):

(i) critical point behaviour with at least one point of inflection and where the eigenvalue
often diverges through negative values asn→∞, which applies to ordersr = 4, 5, 6, and
11; and

(ii) non-critical pointbehaviour without a point of inflection and where the eigenvalue
usually tends asymptotically to a fixed value asn → ∞, which occurs for orders
r = 7, . . . ,10.

The essential distinction is the existence of a high-order critical point (the slope is always
negative), rather than the limiting behaviour of the eigenvalue. For small values of iteration
number the two cases have similar rapid decays and flattening-out shapes. Examples of
both of these types of behaviour are displayed in figure 3.

There are two possible options for achieving the correspondence of our assumed, but
inexact, form with the actual data:
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(i) a direct and local approach where the data are transformed under repeated applications
of a combined Shanks-type transformation and Richardson extrapolation law constructed
according to our assumed form; or

(ii) a global approach whereby the form is fitted to a subset of the data according to
some appropriate criteria.

We chose the latter course, as it was more stable and yielded superior accuracy.

Table 1. Ground-state energy density estimatesε0 for the 1D antiferromagnetic Heisenberg
chain at various ordersr in the plaquette expansion for systems of various sizesN .

ε0 N = 103 5× 103 104 5× 104 105

Orderr = 4 −0.442 344 16 −0.443 225 63 −0.443 443 98 −0.443 589 13 −0.443 610 08
5 −0.442 492 69 −0.443 066 96 −0.443 165 26 −0.443 273 09 −0.443 295 76
6 −0.442 623 40 −0.443 017 00 −0.443 102 45 −0.443 205 50 −0.443 227 62
7 −0.442 637 79 −0.443 010 40 −0.443 095 61 −0.443 199 45 −0.443 222 55
8 −0.442 642 86 −0.442 998 29 −0.443 082 67 −0.443 191 29 −0.443 215 84
9 −0.442 681 43 −0.443 020 47 −0.443 097 88 −0.443 199 07 −0.443 221 46

10 −0.442 738 50 −0.443 049 03 −0.443 120 78 −0.443 209 57 −0.443 228 30
11 −0.442 733 78 −0.443 045 10 −0.443 115 35 −0.443 126 23 −0.443 146 09

For the fitting criteria there were two different criteria that we tested, a least-squares and
anLp-norm fit over the residuals forp = 10. The latter case should be preferred because
the criterion of the fit is then the largest absolute deviation from the chosen law, which is
more appropriate for data that have very little random error in comparison to the systematic
errors. This was borne out in the analysis, with the least-squares fit giving inferior results.
Fitting points were sampled in step sizes ofN/1000, and a total of 70 points in an interval
were taken to be fitted which included at least 41% of the total number of points. Results for
fitting intervals containing more than 80 points sometimes failed to yield physical solutions,
and those with less than 50 points had little significance. An average of the fitted results
for 60 → 80 points changed the most accurate energy by only 1.0× 10−5. The fitting
interval was moved along the total range of data, and the residuals computed. The fit for
the interval where the residual was smallest was the one taken as the best estimate. When
the interval includes low-Lanczos-iteration-number data, the form for the termination error
is not adequately modelled by a simple exponential decay although the plaquette expansion
error is negligible. On the other hand when the interval includes high-Lanczos-number
data the termination error is very small but now the plaquette expansion error terms have
grown and cannot be adequately represented by three terms. So our fitted residuals were
lowest in the intermediate-Lanczos-iteration-number regime, which also happened to be
close to an inflection point, where it existed. Generally it was found that the best total
residual (not the average residual) was less than 10−6. We used the sequential quadratic
programming algorithm to solve the non-linear optimization problem as implemented in
the 64-bit packages FSQP Version 3.4 and QLD [17]. This combination was found to be
the most robust and efficient amongst the various codes of equivalent accuracy that were
available. The intercept parameter, representing the best estimate of the ground-state energy
densityε0, is tabulated in table 1.

The first point to note from these data is that the energy density estimates are quite
good, the best having a percentage error of 3× 10−4%, i.e. better than five decimal digits
accuracy. For a given system size it is observed that each new order in the plaquette
expansion, amongst the critical data sets, brings about improved accuracy, although this
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Table 2. A comparison of ground-state energy density estimates for the 1D antiferromagnetic
Heisenberg chain calculated by various methods using Hamiltonian moments.

Method Ground-state energy density Notes

t-expansiona −0.441 892 H 8

Plaquette expansion−0.443 815 r = 3, H 8, N = 105

CMXb −0.434 784 Five ordersH 11

Plaquette expansion−0.443 610 r = 4, H 10, N = 105

Plaquette expansion−0.443 144 r = 11, H 24, N = ∞
Exact −0.443 147 18

a Reference [1].
b Reference [18].

improvement is uneven. We do not offer a theoretical justification for the convergence of the
expansion on the basis of this. The non-critical data sets follow quite a different trend which
arises from the fact that when the eigenvalue approaches a fixed value asymptotically, the
Lanczos process has effectively terminated and no further information can be extracted from
the eigenvalue, and all of this has occurred before a critical point has been encountered. A
second note can be made with regard to the trends in the table 1 with system size. Generally
results are better—and more so, with larger systems—when the approximation is taken at a
given order. The third point to consider is that the results here systematically considerably
improve on the initial employment of the plaquette expansion [3, 6], whereby the eigenvalue
at the point of inflection in the Lanczos iterations was taken as the best estimate. Fourthly,
these results are considerably better than other related treatments that are based on a moment
formalism. We present, in table 2, the best estimates obtained by these methods.

Our approach in analysing the plaquette expansion can be independently appraised by
seeing how well the computed energies at a given order in the approximation scale with
system size. In figure 4 we display theN -dependence for the highest order and it is clear
that there is, within the errors, an analytical dependence ofε0 on 1/N about the infinite-
system limit. The system sizes that we have used have easily placed us in the regime where
a purely linear form can be observed. This form is different from the finite-size scaling for
the exact finite systems where one expects [19, 20]

−12N2

π2
(ε0(N)− ε0(∞)) = 1+ a1(lnN)

−3+ a2(lnN)
−4+ · · · . (25)

This difference we attribute to the truncation brought about by the plaquette expansion, as
there must exist a difference with an order of 1/N between the exact finite-system ground-
state energy and the plaquette expansion truncated estimate. This result also gives us our
most accurate extrapolated energy, which is given in table 2.

It should be noted that we have not attempted to perform an extrapolation from the
sequence of energies arising from finite orders in the approximation. This is primarily
because we have no theoretical basis for such an extrapolation, and there are not enough
unambiguous data for us to make a purely empirical deduction.

There are several sources of error associated with these ground-state energies; some of
these cannot be corrected for with our simple analysis but can only remain as part of the
final total error, whereas others can be corrected for. In the first instance there is the error
associated with the relatively crude form for the Lanczos convergence process, and which
is represented by the residuals and the systematic variation with the fitting parameters. We
estimate that the residual and the systematic fitting errors are of the order 10−6 and 10−5
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Figure 4. The finite-size scaling of the ground-state energiesε0 at the orderr = 11, where
system sizes range fromN = 103 to 105. Also shown is the best-fit straight line.

respectively, in the most accurate case. These cannot be reduced except by the employment
of a more refined form for this dependency. Even if these sources of error were negligible
or even absent there would still be two remaining errors—those due to the finite size of the
system, and the finite order at which the cluster expansion is terminated. These errors can
in principle be corrected or compensated for.

4. Conclusion

We have analysed the errors involved in the truncation of the plaquette expansion and
the termination of the Lanczos process, and formulated a simple method for extracting
accurate estimates for various ground-state spectral quantities of an arbitrary extensive lattice
Hamiltonian system. We have shown by dint of the application of such an analysis to the
one-dimensional Heisenberg spin chain that this method is capable of producing accurate
spectral quantities. By taking the expansion up to the 11th order we have reproduced the
known ground-state energy density to better than 10−5. We have used a very simple form
in the modelling of the errors in our method, and predict that with refinements in this
form, reflecting deeper knowledge of the spectrum of the system and the dynamics of the
Lanczos process, better results would be obtained. The effort in obtaining these results is
very modest, the computation of the connected moments taking most resources, but even
considering this it is modest.
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